CHELIC_®

質量流量計/控制器操作說明書

MFM-C500 / MFC-C500系列

MF-C500 Series -Mass & Flow Meter User Manual

概述

▲ 注意事項

(1) 介質使用要求

使用本產品時,必須保證氣體潔淨、乾燥,避免粉塵、液體和油污的混入。

建議用戶在氣路中安裝過濾和乾燥裝置。若產品出口處接有液體源,則必須在出口處安裝單向閥,防止液體回流對產品造成損壞。

警告

若使用本產品測量危險氣體,請務必採取必要的預防措施。 對於危險、易燃易爆的氣體,操作時必須極為小心,以避免安全事故。

- (a) 在使用前, 應確保安裝和連接氣路的氣密性並進行嚴格檢驗。
- (b) 若危險氣體具有潮濕性,須先進行乾燥處理,並保證氣體不會與儀器或密封材料產生化學反應。
- (c) 從系統上卸下本產品時,應在斷開氣路前,使用乾燥且對人體無害的常規氣體(如氮氣、空氣)或惰性氣體對產品進行徹底清洗。
- (d)除非本產品已通過有效認證,否則不得在易爆炸性環境中使用。

(2) 閥口密封問題

氣體質量流量計/控制器為流量測試裝置,並不配備閥門,需由用戶自行配置截止閥。 特別是在使用危險氣體的情況下,用戶應在本產品的進、出氣口各安裝一個截止閥,以保證操作安全。

▲ 初步檢查

(1) 檢查氣源及氣路

檢查氣源是否打開,並確認氣體已正確通入產品的氣路中。

(2) 檢查電源及控制信號

確保電源和控制信號已正確輸送至電路板上的電氣接頭。

(3) 檢查通訊線

確認通訊線是否正確連接,避免因接線錯誤造成的故障。

▲ 故障檢查

根據以下表格進行故障診斷和排除。

序號	故障現象	可能原因	處理方式
1	開機後,無氣流通過	氣源未開,氣路未通	接通氣源,開通氣路
2	不通氣時,顯示值不為零	仍有氣體流動	檢查截止閥是否關閉
		電源故障	檢查電源
		零點偏差	使用零點校準功能
		* 其他故障	請與本公司聯繫
3	顯示值與實際流量不一致	氣路連接不正確	檢查氣路連接
		壓力不在要求範圍	檢查進氣壓力
		* 流量計被汙染	請與本公司聯繫
		* 流量計出現數據擺盪	請與本公司聯繫
4	無法通訊	電源問題	檢查電源
		通訊連接問題	檢查通訊線連接
		通訊位址衝突	檢查通訊位址
		波特率設置不正確	檢查波特率設置
		* 其他故障	請與本公司聯繫

警告

標有 * 號的項目必須由本公司專業維修人員處理。

如果故障不在上述表格中,或根據表格無法解決故障,請立即聯繫本公司尋求協助。

▲ 訂購代號 - MFM/C-C500 質量流量計 / 控制器

MFM/C-C500系列產品採用工業級先進流量傳感器晶片,結合低壓損氣路結構搭配高速控制及溫度補償,可以實現最小0.1sccm、最大 20slm 流量範圍控制。該產品可選配流量計或控制器,完美支援半導體、真空鍍膜、實驗室、光電產業、分析儀等各類應用環境。

1	代號	功能
	MFM	流量計
	MFC	流量 + 控制器

2	代號	等級
	C500	高精度型

(3) 代號 最大流量 代號 最大流量 A01 10 sccm 010 1 slm A02 20 sccm 020 2 slm A05 50 sccm 050 5 slm 001 100 sccm 100 10 slm					
A02 20 sccm 020 2 slm A05 50 sccm 050 5 slm 001 100 100 10 slm	3	代號	最大流量	代號	最大流量
A05 50 sccm 050 5 slm		A01	10 sccm	010	1 slm
001 100 100 10 slm		A02	20 sccm	020	2 slm
001 = 1 100 10 slm		A05	50 sccm	050	5 slm
		001		100	10 slm
002 200 200 20 slm		002		200	20 slm
005 500		005	500		
sccm		000	sccm		

4	代號	接頭
	無記號	不附外接接頭
	C08	Ø8 mm 快插
	P01	卡套 1/8"
	P02	卡套 1/4"
	PD6	卡套 6 mm
	PD8	卡套 8 mm
	VC02	VCR 1/4"

[●]註:無外接接頭產品,產 品側採用 G1/4" 內螺紋及 17.5mm×17.5mm 法蘭。

5	代號	類比輸出
	Α	電流型 4~20 mA
	V	電壓型 0~5 V

6	代號	數位輸出
	RS4	RS-485 通訊
	RS2	RS-232 通訊

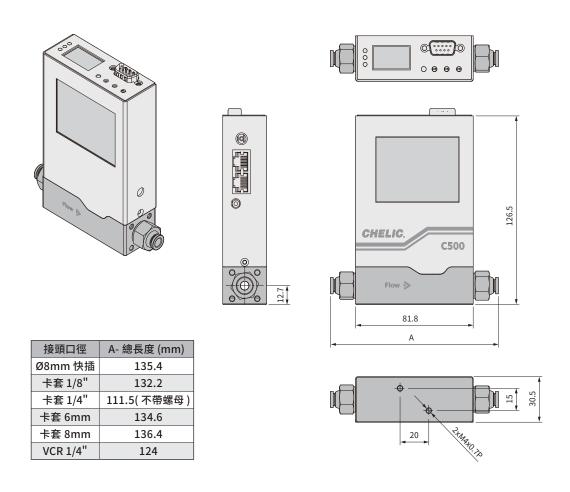
代號	氣體種類
無記號	空氣
С	二氧化碳
E	氦氣
Н	氫氣
N	氮氣
0	氧氣
R	氬氣
СН	甲烷
	無記號 C E H N O

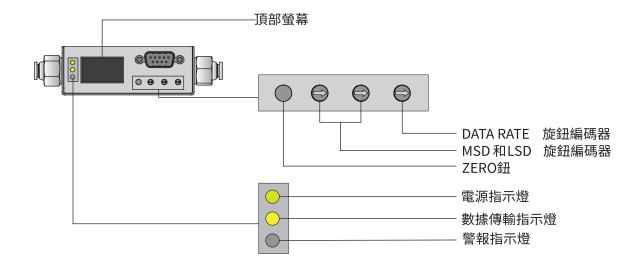
8	代號	觸控螢幕
	無記號	無觸控螢幕
	D	有觸控螢幕

無觸控螢幕

● 示意圖

▲ 規格表


項目	型號	C500	
量程(氮氣等效) 雖1		10, 20, 50, 100, 200, 500 (sccm); 1, 2, 5, 10, 20 (slm)	
介質要求		潔淨乾燥無腐蝕性氣體	
測量氣體		空氣、氮氣、氧氣、二氧化碳、氦氣、氫氣、 甲烷、氦氣等	
	精度	±0.3%F.S. (≤ 30%F.S.) ±1.0%S.P. (> 30%F.S.)	
	重複精度	±0.2%F.S. 以下 註2	
流量表示	解析度	0.001 sccm ≤ 20 sccm, 0.01 sccm ≤ 100 sccm 且 >20 sccm, 0.1 sccm ≤ 1 slm 且 >100 sccm, 1 sccm > 1 slm	
量程比		100:1	
最大耐壓(par)	9.8	
洩漏率		1×10 ⁻¹⁰ Pa m³/s He 以下	
響應時間 (s) 註4	0.5以下	
啟動時間()	1以下	
	工作溫度 (°C)	0~50(無結冰、無結霜)	
	工作濕度	10%~90%RH 以下	
使用條件	工作壓力 (MPa) 註5	0.5~4,>2 slm 0.5~6,≤ 2 slm (具體量程相關)	
	儲存溫度 (°C)	-20~85(無結冰、無結霜)	
電源規格	電壓	DC24V	
电源风俗	功耗	4.0W 以下	
	接口類型	D-SUB9, RJ45	
通訊接口	類比控制	0~ 5V 或 4~20 mA	
	數位控制	RS-485 或 RS-232	
	接口類型	D-SUB9 或 RJ45	
通訊輸出	通訊速率	9600, 38400, 115200(原廠值)	
趙計鞩出	通訊協議	Modbus-RTU	
	設備位置	1(原廠值)~99	
接頭類型		不附外接接頭 (標準型);快插:Ø8mm;卡套:6mm,8mm,1/8",1/4";VCR1/4" 註6	
氣體接觸材	質	316L 不銹鋼、氟橡膠、二氧化矽	
主體材質		底座: 316L 不銹鋼 ; 外殼: 鋁合金	
密封材質		FKM 氟橡膠	
重量 (kg)		0.95	


註:本產品標定於以下條件:氮氣、25°C、2.5bar 差壓(進氣口 3.5barA,出氣口 1barA)、水平放置。 建議在入口端安裝尺寸合適的直管段,否則可能會引起精度產生偏差。 建議在入口端和出口端匹配盡可能大的接頭,以避免導致額外的壓損。

- 1. 所示量程為氮氧可遲量程 2. %F.S. 指誤差占滿量程的百分比。 3. %S.P. 指誤差占凝定值的百分比。 4. 響應時間指達到設定值 ±2% 以內所需要的時間。 5. 工作壓力指進氣口與出氣口之間的差壓。 6. 產品側採用 G1/4" 內螺紋及 17.5mm×17.5mm 法蘭。

CHELIC.

▲ 外觀圖形尺寸 - MF-C500

▲ 開機說明:

1.接通電源

C500 系列產品的供電電壓為 DC24V,可透過以下兩種方式接通電源,進行開機操作:

(1) 透過獨立供電介面

使用者可使用 DC24V 連接至產品的獨立供電接口,即可完成開機。

(2) 透過 D-SUB9 接頭

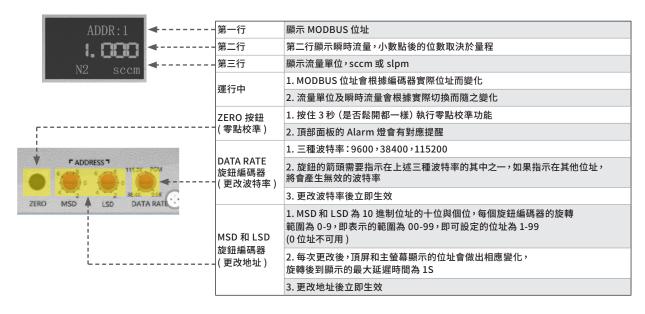
用戶也可選擇通過 D-SUB9 接頭 進行供電,並實現開機操作,滿足不同應用需求的靈活選擇。

2. 通信方式

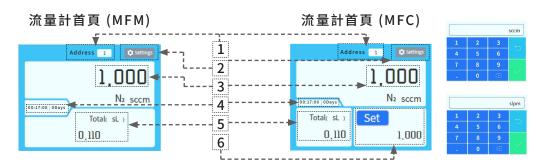
C500 系列產品的預設通信方式包括 RS-485 和 0~5V,可透過產品配置的 RJ45 接口或 D-SUB9 接口進行連接。

○ RJ45

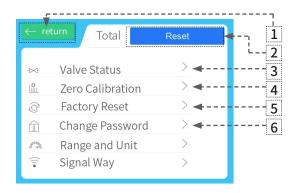
PIN	線色	內容
1	藍	信號地 (SGND)
2	黃	信號地 (SGND)
3	橘	N.C (請勿連接)
4	棕	RS485-B 或 RS232-RX
5	綠	RS485-A 或 RS232-TX
6	紫	N.C (請勿連接)
7	白	N.C (請勿連接)
8	黑	N.C(請勿連接)


O D-SUB 9pin


PIN	線色	內容
1	藍	N.C (請勿連接)
2	黃	電壓輸出:0~5V 電流輸出:4~20mA
3	橘	電源 Power + (24V)
4	棕	電源 Power — (GND)
5	綠	RS485-A 或 RS232-TX
6	紫	電壓輸入:0~5V 電流輸入:4~20mA
7	白	類比地 (AGND)
8	黑	類比地 (AGND)
9	紅	RS485-B 或 RS232-RX


開機說明:

▲ 流量計與流量控制器功能列表



1	上方 Address	實際位址,隨著編碼器位址改變而改變			設定流量值 (整個右下角白框內均觸摸有效)
2	右上角 Setting	點擊後進入一級設定介面			1. 單位為 sccm 時,觸碰後彈出單位為 sccm 的鍵盤,
3	中間數據	瞬時流量、氣體類型、單位 1.單位:sccm或 slpm 2.表示分解能:取決於量程	6	石下角 (控制器專	可輸入與瞬時流量對應的精度 2. 當單位為 slpm 時,觸碰後彈出單位為 slpm 的鍵盤,可輸入與瞬時流量對應的精度 3. 鍵盤介面下,返回鍵表示放棄輸入,對號表示確認輸入,
4	左下角	累積時間格式:小時:分:秒,天			叉號表示退格,不輸入數字直接觸發對號鍵也表示放棄輸入 4. 當設定值大於使用者設定的量程時,會有失敗提醒,
5	左下角	累積流量:小數點三位,當數字大於 999999.999後,單位從 scc 變成 sL, 或 sL 變成 sm3			等. 备設定值不於使用有設定的單程時,實有失效提醒, 設定值會保留在上次的有效設定值 5. 當設備支援類比訊號(出廠標定並開啟對應功能), 用戶切換到類比訊號功能時,會有設定失敗提醒

▲ 一級設置介面

	New Pas	sword	
1	2	3	
4	5	6	
7	8	9	
	0	(×

▲ 通訊協議

▶ 主要參數

通訊接口	RS-485/RS-232 半雙工模式
波特率	9600
數據位	8
停止位	1
校驗	無
通信數據格式	MODBUS RTU (位址預設為 1)

▶ 寄存器列表

寄存器位址 (16 進位)	寄存器內容	數據類型	讀寫類型	備註
0x0003	氣體類型	無符號 16 位整數	READ	
0x0004	滿量程	無符號 16 位整數	READ	
0x0005	流量單位	無符號 16 位整數	READ	
0x0014	流量小數位個數	無符號 16 位整數	READ	
0x0015	溫度 16 位	無符號 16 位整數	READ	
0x0016	流量高 16 位	無符號 32 位整數	READ	
0x0017	流量低 16 位	無付號 32 世	KEAD	
0x0018	累積流量高 32 位			
0x0019	示恨//(重同 52 位	無符號 64 位整數	READ/WRITE	
0x001A	累積流量低 32 位	/// 15 Jill 0 . 12 12 5X	,	
0x001B				
0x001C	累積流量單位 0: L ; 1: m³	無符號 16 位整數	READ	
0x001D	累積流量的天數	無符號 16 位整數	READ	
0x001E	累積流量的小時數	無符號 16 位整數	READ	
0x001F	累積流量的分鐘數	無符號 16 位整數	READ	
0x0020	累積流量的秒數	無符號 16 位整數	READ	
0x0021	閥門控制方式 0:流量控制模式 3:閥門比例模式	無符號 16 位整數	READ/WRITE	
0x0022	設定流量高 16 位	無符號 32 位整數	DEAD/WRITE	僅適用於 C500 系列
0x0023	設定流量低 16 位	有效位數 0.001	READ/WRITE	
0x0024	設定閥門開度	無符號 16 位整數 有效位數 0.01	READ/WRITE	
0x0025	零點校正	無符號 16 位整數	WRITE	

▶ 應用實例

● 例 1- 主機讀基本資訊

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x03	0x00	0x03	0x00	0x03	0xF5	0xCB

從機返回:

設備位址	功能碼	數據位元組數	氣體類型高位元組	氣體類型低位元組	滿程量高位元組	滿程量低位元組
0x01	0x03	0x06	0x00	0x0D	0x00	0x64
流量單位高位元組	流量單位低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組			
0x00	0x0A	0xCD	0x6C			

數據分析

(1) 氣體類型:

0x000D(十六進位)=13(十進位)

查閱下表代碼,可知 13 表示氮氣

代碼(十進制)	氣體類型	代碼 (十進制)	氣體類型
1	氦氣 (He)	13	氮氣 (N2)
2	一氧化碳 (CO)	15	氧氣 (O2)
4	氬氣 (Ar)	25	二氧化碳 (CO2)
7	氫氣 (H2)	28	甲烷 (CH4)
8	空氣 (Air)		

(2) 流量單位:

0x000A(十六進位) = 10(十進位)

查閱下表代碼,可知 10 表示 sccm

代碼(十進位)	流量單位
10	sccm
100	slm

(3) 滿量程:0x0064(十六進位) = 100(十進位)

可知該設備的滿量程為 100

(若流量單位是 sccm,則滿流量為 100 sccm; 若流量單位是 slm,則滿流量為 100 slm)

● 例 2- 主機讀溫度、流量

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x03	0x00	0x14	0x00	0x04	0x04	0x0D

從機返回:

設備位址	功能碼	數據位元組數	小數位高位元組	小數位低位元組	溫度數據高位元組	溫度數據低位元組
0x01	0x03	0x08	0x00	0x01	0x00	0xFD
流量數據位元組1	流量數據位元組 2	流量數據位元組 3	流量數據位元組 4	CRC 校正 低位元組	CRC 校正 高位元組	
0x00	0x00	0x30	0x39	0x3C	0xD1	

數據分析

(1) 溫度:

0x00FD(十六進位) = 253(十進位) 除以 10,得到實際溫度 = 253/10 = 25.3(℃)。

(2) 流量資料的小數位數:

0x0001(十六進位) = 1(十進位)

從下表可知,1表示流量資料有三位小數。

代碼 (十進位)	流量單位
0	兩位小數
1	三位小數
2	整數
3	一位小數

(3) 流量:

0x00003039(十六進位) = 12345(十進位) 結合流量資料的小數位數,可是目前流量為 12345*0.001 = 12.345 (若流量單位為 sccm,則流量為 100 sccm;若流量單位為 slm,則流量為 100 slm)。

● 例 3- 主機讀累積流量

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x03	0x00	0x18	0x00	0x09	0x05	0xCB

從機返回:

設備位址	功能碼	數據位元組數	累積流量 數據位元組數1	累積流量 數據位元組數 2	累積流量 數據位元組數 3	累積流量 數據位元組數 4	累積流量 數據位元組數 5
0x01	0x03	0x12	0x00	0x00	0x00	0x00	0x07
累積流量 數據位元組數 6	累積流量 數據位元組數 7	累積流量 數據位元組數 8	累積流量 單位高位元組	累積流量 單位低位元組	累積流量 天數高位元組	累積流量 天數低位元組	累積流量 小時數高位元組
0x5B	0xCD	0x15	0x00	0x00	0x27	0x10	0x00
累積流量 小時數低位元組	累積流量 分鐘數高位元組	累積流量 分鐘數低位元組	累積流量 秒數高位元組	累積流量 秒數低位元組	CRC 校正 低位元組	CRC 校正 高位元組	
0x0A	0x00	0x32	0x00	0x1E	0x6E	0xF9	

數據分析

(1) 累積流量單位:

0x0000 (十六進位) = 0 (十進位) 查閱寄存器列表,可知 0 表示 L。

(2) 累積流量:

0x0000000075BCD15 (十六進位) = 123456789 (十進位) 除以 1000,得到實際累積流量為 123456.789 (若流量單位為 L,累積流量為 123456.789L;若流量單位是 m^3 ,累積流量為 $123456.789m^3$)。

(3) 累積時間:

天數	0x2710(十六進位) = 10000(十進位)
小時數	0x000A(十六進位) = 10(十進位)
分鐘數	0x0032(十六進位) = 50(十進位)
秒數	0x001E(十六進位)=30(十進位)

可知累積時間為 10000 天 10 小時 50 分鐘 30 秒。

● 例 4- 主機對累積流量清零

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器個數 高位元組	寄存器個數 低位元組	修改數據的 位元組長度	數據 1 高位元組	數據 1 低位元組
0x01	0x10	0x00	0x18	0x00	0x04	0x08	0x00	0x00
數據 2 高位元組	數據 2 低位元組	數據 3 高位元組	數據 3 低位元組	數據 4 高位元組	數據 4 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組	
0x00	0x00	0x00	0x00	0x00	0x00	0x96	0x5A	

從機返回:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器個數 高位元組	寄存器個數 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x10	0x00	0x18	0x00	0x04	0x41	0xCD

● 例 5- 主機設定流量(僅支持 C500 系列)

主機設定流量的方法有兩種:

▲方法 1:先設定控制方式,再設定流量。 ▲方法 2(建議):控制方式和流量同時設定。

▲方法1具體如下:

先設定控制方式,向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器數據 高位元組	寄存器數據 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x21	0x00	0x00	0xD9	0xC0

數據分析

0x0000(十六進位)=0(十進位)

從寄存器清單可知,0表示將控制方式設定為「流量控制模式」。

註:主機預設採用的控制方法為"流量控制模式",如不需要更改,可略過此步驟,直接設定流量。如需多次設定流量且控制方法相同,此步驟執行一次即可,無需重複執行。

若從機返回以下數據,表示操作成功。

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器數據 高位元組	寄存器數據 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x21	0x00	0x00	0xD9	0xC0

控制方法確定後,進行流量設置,向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	修改數據的 位元組長度
0x01	0x10	0x00	0x22	0x00	0x02	0x04
數據 1 高位元組	數據1低位元組	數據 2 高位元組	數據 2 低位元組	CRC 校正低位元組	CRC 校正高位元組	
0x00	0x00	0x30	0x34	0x65	0xB9	

數據分析

0x00003034(十六進位) = 12340(十進位)

除以 1000, 得到設定的目標流量值 = 12340/1000 = 12.34

(若流量單位是 sccm,則目標值為 12.34 sccm;若流量單位是 slm,則目標值為 12.34 slm)。

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x10	0x00	0x22	0x00	0x02	0xE1	0xC2

▲方法 2 具體如下:

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	修改數據的 位元組長度	數據 1 高位元組
0x01	0x10	0x00	0x21	0x00	0x03	0x06	0x00
數據 1 低位元組	數據 2 高位元組	數據 2 低位元組	數據 3 高位元組	數據 3 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組	
0x00	0x00	0x00	0x30	0x34	0xA3	0xF8	

數據分析

(1) 控制方式:

0x0000(十六進位)=0(十進位)

從寄存器清單可知,0表示將控制方式設定為「流量控制模式」。

(2) 流量設定:

0x00003034(十六進位) = 12340(十進位)

除以 1000, 得到設定的目標流量值 = 12340/1000 = 12.34

(若流量單位是 sccm,則目標值為 12.34 sccm;若流量單位是 slm,則目標值為 12.34 slm)。

若從機返回以下數據,表示操作成功(修改後立即生效)。

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x10	0x00	0x21	0x00	0x03	0xD0	0x02

● 例 6- 主機設定閥門開度(僅支持 C500 系列)

主機設定閥門開度的方法有兩種:

▲方法 1:先設定控制方式,再設定比例。 ▲方法 2(建議):控制方式和比例同時設定。

▲方法1具體如下:

先設定控制方式,向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器數據 高位元組	寄存器數據 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x21	0x00	0x03	0x99	0xC1

數據分析

0x0003(十六進位)=3(十進位)

從寄存器清單可知,3表示將控制方式設定為「閥門比例模式」。

注意:如需連續多次設定不同的比例,此步驟執行一次即可,無需重複執行。

若從機返回以下數據,表示操作成功。

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器數據 高位元組	寄存器數據 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x21	0x00	0x03	0x99	0xC1

控制方法確定後,進行比例設置,向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器數據 高位元組	寄存器數據 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x24	0x04	0xD2	0x4B	0x5C

數據分析

0x04D2(十六進位) = 1234(十進位)

除以 100, 得到設定的目標比例 = 1234/100 = 12.34(%)。

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器數據 高位元組	寄存器數據 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x24	0x04	0xD2	0x4B	0x5C

▲方法 2 具體如下:

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	修改數據的 位元組長度	數據 1 高位元組	數據 1 低位元組
0x01	0x10	0x00	0x21	0x00	0x04	0x08	0x00	0x03
數據 2 高位元組	數據 2 低位元組	數據 3 高位元組	數據 3 低位元組	數據 4 高位元組	數據 4 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組	
0x00	0x00	0x00	0x00	0x04	0xD2	0x7B	0x9B	

數據分析

(1) 控制方式:

0x0003(十六進位)=3(十進位)

從寄存器清單可知,3表示將控制方式設定為「閥門比例模式」。

(2) 比例設定:

0x04D2(十六進位) = 1234(十進位)

除以 100,得到設定的目標比例 = 1234/100 = 12.34(%)。

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器 長度高位元組	寄存器 長度低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x10	0x00	0x21	0x00	0x04	0x91	0xC0

● 例 7- 主機讀取位址 (僅支持 C500 系列)

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器長度 高位元組	寄存器長度 低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0xFE	0x03	0x00	0x00	0x00	0x01	0x90	0x05

從機返回:

設備位址	功能碼	數據位元組數	位址高位元組	位址低位元組	CRC 校正低位元組	CRC 校正高位元組
0xFE	0x03	0x02	0x00	0x01	0x6D	0x90

數據分析

0x0001(十六進位)=1(十進位)可知目前位址為1°

● 例 8- 主機對零點校正

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器 數值高位元組	寄存器 數值低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x25	0x00	0x01	0x59	0xC1

若從機返回以下數據,表示操作成功(修改後立即生效)。

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器 數值高位元組	寄存器 數值低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x25	0x00	0x01	0x59	0xC1

● 例 9- 恢復出廠設置

向機發送:

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器 數值高位元組	寄存器 數值低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x25	0x00	0x02	0x19	0xC0

若從機返回以下數據,表示操作成功(修改後立即生效)。

設備位址	功能碼	寄存器首位址 高位元組	寄存器首位址 低位元組	寄存器 數值高位元組	寄存器 數值低位元組	CRC 校驗 低位元組	CRC 校驗 高位元組
0x01	0x06	0x00	0x25	0x00	0x02	0x19	0xC0

▲ 附錄 常用氣體轉換係數

氣體名稱	分子式	代號	轉換係數
氮 氣	N ₂	01	1.000
空氣	Air	02	1.001
氧氣	O ₂	03	1.025
二氧化碳	CO ₂	04	0.750
氫氣	Ar	05	1.600
甲烷	CH ₄	06	0.900
氫氣	H ₂	07	3.900
<u> </u>	He	08	4.000
一氧化碳	CO	09	1.015
砂烷	SiH ₄	10	0.685
氨氣	NH ₃	11	0.910
一氧化二氮	N ₂ O	12	0.751
三氯化硼		13	0.481
	BCI ₃		
	CI ₂	14	0.841
一氧化氮	NO	16	0.994
丙烯	C ₃ H ₆	69	0.453
丙烷	C ₃ H ₈	89	0.395
砷烷	AsH ₃	35	0.755
三氟化硼	BF ₃	48	0.575
硼烷	B ₂ H ₆	58	0.507
四氯化碳	CCl₄	101	0.342
四氟化碳	CF₄	63	0.469
乙炔	C ₂ H ₂	42	0.664
乙烯	C ₂ H ₄	38	0.679
乙烷	C ₂ H ₆	54	0.548
丙炔	C ₃ H ₄	68	0.478
丁炔	C ₄ H ₆	93	0.362
丁烯	C ₄ H ₈	104	0.331
丁烷	C ₄ H ₁₀	117	0.289
戊烷	C ₅ H ₁₂	240	0.244
乙醇	C ₂ H ₆ O	136	0.439
氰氣	C ₂ N ₂	59	0.508
	D ₂	39	2.449
氟 氣	F ₂	18	0.949
	GeH₄	43	0.638
溴化氫	HBr	19	0.987
氯化氫	HCI	27	0.998
氟化氫	HF	29	1.019
碘化氫	HI	17	0.972
硫化氫	H ₂ S	22	0.890
氪氣	Kr	15	1.388
氖氣	Ne	25	1.562
二氧化氮	NO ₂	26	0.789
三氯化磷	PCl ₃	193	0.399
一	PH ₃	31	0.399
五氟化磷	PF ₅	143	0.784
四氯化矽	SiCI ₄	108	0.340
四氟化矽	SiF ₄	88	0.390
二氯氫矽	SiH ₂ CI ₂	67	0.467
三氯氫矽	SiHCl₃	147	0.381
六氟化硫	SF ₆	110	0.297
二氧化硫	SO ₂	32	1.218
六氟化鎢	WF ₆	121	0.240
氙氣	Xe	70	1.369

CHELIC

▲ 附錄 常用氣體轉換係數

▶ 轉換係數使用說明

轉換係數使用說明:

本公司出廠的質量流量控制器、質量流量計產品預設採用 N_2 標定,如需用於其他氣體,則需要通過轉換係數進行讀數修正。修正方法為將產品顯示的流量乘以流量轉換係數。部分氣體的轉換係數可在本公司的使用說明書中查詢,其他氣體則需依照以下公式計算其轉換係數 C:

● 轉換係數公式

C = exp(- 1.193 + 0.016 \times h + 0.025 \times h2)/(ρ \times C_p) h = 43.86 \times λ

其中:

- (1) λ: 氣體在標準狀態下的熱導率 (單位: W/m・K)
- (2) ρ:氣體在標準狀態下的密度(單位:g/L)
- (3) C。:氣體的定壓比熱(單位:cal/g·K)

標準狀態為:

- (1) 壓力:101.325 kPa (760 mm Hg)
- (2) 溫度:273.15 K (0℃)

● 混合氣體轉換係數

對於混合氣體,轉換係數 C_{mix} 需依照以下公式計算:

 $C_{mix} = \frac{1}{(q1/qmix)/C1 + (q2/qmix)/C2 + \cdots + (qm/qmix)/Cn}$

其中:

- (1) q1 ··· qn:對應氣體的流量
- (2) qmix:混合氣體的總流量
- (3) C1 ··· Cn: 對應氣體的轉換係數

請根據上述公式計算出所需氣體或混合氣體的轉換係數,以確保流量測量的準確性。

▲ 保固條款

本產品必須在說明書規定的正常工作條件下,嚴格按照正確的 進行安裝、使用及維護保養。

本公司為生產的氣體流量計系列產品提供以下保固服務:

- (1) 新產品:自發貨之日起,提供 365 天免費保固服務。
- (2)維修或更換產品:自發貨之日起,提供 90 天的免費保修服務或延續原保固期。

下列情況不適用於保固條款:

注意

- (1) 非本公司原裝產品。
- (2) 產品的安全標籤被撕毀。
- (3) 產品在說明書規定的或未規定的不正常環境中使用,或任何被視為非正常使用的情況。

▲ 產品保證

本公司為生產的氣體流量計系列產品提供以下保證:

- (1) 保固期內,產品必須由本公司進行維護和修理,否則保固無效。
- (2) 在 365 天保固期內,提供免費維修服務。
- (3) 本公司會在產品出廠前對每台產品的質量和功能進行檢查(包括外觀檢查、氣體檢漏及流量標定)。
- (4) 使用者有責任依據本手冊的規定來正確使用本產品。因使用不當造成的損壞將不由本公司負責。
- (5) 若產品部件因材料或品質瑕疵失效,本公司將提供免費更換服務。

▲ 免責聲明

本公司對於以下情況所造成的損壞不承擔任何責任:

- (1) 由火災、天災等自然災害導致的產品故障或損壞。
- (2) 因誤操作或不合理使用而導致的產品故障或損壞。
- (3) 在不適宜或惡劣環境下操作或儲存產品所造成的故障或損壞。
- (4) 因未按照產品使用說明書正確使用而導致的產品故障或損壞。
- (5) 由於雜質混入而引起的產品故障或損壞。
- (6) 未經授權私自撕毀安全標籤並改動產品。
- (7) 在保證期內,如明確由本公司責任造成的故障或損傷的場合,本公司提供代替品或必要的可換件。

另外,此處的保證是本公司產品單體的保證,

由於本公司產品的故障引發的損害不在保證對象範圍內。